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ABSTRACT 

A two-person search/ambush game is considered where each player wants to 

maximize his survival time while minimizing the survival time of his adversary.  This is 

done in the context of convoy routing where each player can choose which route they 

take.  Their estimated survival times depend upon (a) if their adversary is directly 

searching on that route, (b) the indirect probability of detection or hazard if their 

adversary is not along that route, and (c) the risk involved with moving from route to 

route.  It is possible for a player to be interdicted even if his adversary is not on that 

route.  Each player has a payoff matrix that maximizes their expected time to capture.   

We show that both payoff matrices can be evaluated as a bimatrix game that yields 

optimal mixed Nash Equilibria through the use of non-linear programming.  The results 

of this evaluation can be used to optimally conduct route clearing and convoy routing. 
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I. INTRODUCTION  

A. BACKGROUND 

Military convoys, also referred to as Combat Logistic Patrols (CLPs), have 

always been lucrative targets for adversaries that do not have the military advantage to 

sustain and win in direct conflict.  The safety of a convoy is often seen as a function of 

active measures employed by the convoy such as speed, increased aggressiveness and 

patrolling.  To this end, Matthew Hakola used agent based modeling and principal 

component analysis to investigate which variables carry more weight in the success of the 

convoy [1].   However, when faced with multiple routes a commander must make 

decisions based on the threat associated with each route before choosing which one to 

take.  William Ruckle’s geometric approach to the game theory behind a hunter and prey 

has been useful in understanding the foundation of our game [2].   

Our convoy, which we will name Blue, wishes to traverse an area but faces the 

threat of being intercepted between the start and finish of his route by an enemy lying in 

wait.  We will call the enemy Red.  Using Ruckle’s example, we will assume our area is a 

unit square, with a horizontal x-axis and vertical y-axis.   We will assume that neither Red 

nor Blue receive any intelligence on the position of the other once Blue starts to move.  

Because of this limitation Red gains no advantage from changing locations while Blue is 

in motion and so we will consider Red’s position fixed.  Blue simply wishes to get from x 

= 0 to x = 1.  With this in mind we can disregard Red’s x-coordinate, as it does not affect 

his ability to intercept Blue.  Instead, we focus on Red’s ability to intercept Blue as a 

function of his y-coordinate and range of his weapon, which we will define as r.  

Therefore, our unit box can now be decomposed into routes of 1/r width.  Blue gains no 

advantage by changing routes while traversing through the area but can change routes 

with each new crossing.  Using this logic, we limit our game to the use of individual 

routes versus a network of routes. 

 



 

 2

The limitation with most ambush models is that the threat is always one sided.  

This is evident in Ruckle’s examples [2], as well as in textbook examples on game theory 

[6].  In reality, an ambusher must also contend with the fact that he may be discovered 

before he gets the opportunity to conduct an ambush.  Furthermore, the threat is not 

always from an active searcher (also referred to as direct detection).  Rewards and 

humanitarian assistance can influence an area to be more pro-active in uncovering and 

turning in cells that are planning ambushes (also referred to as indirect detection).  So, the 

game becomes more complex with each side trying to maximize their own survival time 

while minimizing their opponent’s time considering both indirect and direct detection. 

We approach this model using a “deductive” search methodology following work 

done by Owen and McCormick [3].  This search methodology focuses on determining 

those routes most favorable to each player rather than trying to follow any “trail” left by 

their presence.  Their algorithm provides us with an expected time to capture / ambush 

for both players.  This time is dependent on the probability of both direct and indirect 

detection as well as the ability to successfully change routes. Then, given the expected 

time to capture / ambush for each player along each route, we use non-linear 

programming to determine the optimal strategy for each player to adopt in order to 

maximize individual survival time. 

B. RESEARCH GOAL 

The goal of this paper is to provide a way to investigate and determine the mixed 

strategies used by both the convoys and adversaries along a relatively small number of 

routes.  This will allow commanders to make informed decisions on which routes to take 

to maximize the survival rate of CLPs as well as which routes are most likely to be 

ambush sites. 

C. BASIC OVERALL MODEL 

The approach we will use is that of a bimatrix game with the goal of finding 

equilibrium points.  Our players are defined as Blue, for the convoy, and Red, for the 

ambusher.  Each player has their own payoff matrix where their goal is to maximize their 

survival time while their adversary simultaneously tries to minimize it.  We define Ψ as 
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the payoff matrix for the Search Model where Red wishes to maximize his survival time 

while Blue searches for him.  Our other payoff matrix, Λ, represents the Ambush Model 

where Blue wishes to maximize his survival time while Red attempts to ambush him.  

These two payoff matrices are then combined into a bi-matrix model (Ψ, Λ) that 

represents the competing goals for each player (i.e., maximize individual survival time 

while minimizing the opponents).   

The Search and Ambush payoff matrices are constructed by adopting a model 

developed by Owen and McCormick [3].  Their manhunting model considers a fugitive 

who faces not only the threat of being captured directly but also the threat of being turned 

in by the local populace [3].  The Search Model adapts this directly for Red’s threat of 

being found through Blue’s direct search and Blue’s efforts to uncover him indirectly 

(i.e., through the actions of others).  The Ambush Model takes into account the threat 

Blue faces from a direct ambush by Red as well as the indirect hazards that may prevent a 

convoy from being completed (terrain, length of route, etc.).   Each route presents four 

initial probabilities:  

1) The probability Red is detected indirectly by a third party (indirect detection 

(q)) 

2) The probability Red is detected directly by Blue (direct detection (p)) 

3) The probability Blue fails complete the convoy because of reasons other than 

an ambush (indirect hazard (r)) 

4) The probability Blue fails to complete the convoy because he was ambushed 

by Red (direct hazard (s)) 

The rate by which each initial probability increases is dependent upon the 

intensity of the efforts of the adversary.  The intensity of each player’s efforts to 

minimize his opponent’s survival time is represented by the variables α, β, and γ.  The 

amount of money and resources Blue spends on gaining the assistance of the local 

populace to uncover Red affects how quickly the threat of indirect detection increases.  

This rate of increase is represented by α and can be seen as quantifying the 

aggressiveness of Blue’s efforts to indirectly detect Red.  The intensity of a direct search 
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for Red (possibly as a function of the numbers of Soldiers, sensors, etc. involved) 

determines how quickly the threat of direct detection increases along a certain route and 

is represented by β, or the aggressiveness of Blue’s efforts to directly uncover Red.  We 

assume that the quality of the route (which affects the indirect threat to the convoy) will 

not change with repeated iterations along that route and therefore we limit ourselves to 

only one parameter for threat’s rate of increase in the Ambush model.  With every use of 

a route, Blue faces the risk of Red moving onto that route to intercept him on the next 

convoy.  The rate at which this threat increases is defined as γ—Red’s aggressiveness.  

Once we construct the individual payoff matrices, we construct the bimatrix 

model (Ψ, Λ) where each cell contains the pair of values from the respective individual 

payoff matrices.  Using non-linear programming, we determine the optimal route 

selection strategies for each player.   We show that these optimal strategies (also known 

as Nash Equilibria) are dependent upon the desired survival time for each player, which 

can be viewed as each player’s decision to be risk averse or risk prone.  These optimal 

strategies are then used to determine which routes a convoy should take, as well as which 

routes a patrol can most expect to uncover the enemy.  
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II. SEARCH MODEL 

A. OVERVIEW 

We use a model created by Owen and McCormick [3] to determine the expected 

time until capture (or ambush) for each player.  For the benefit of the reader, and to add 

our own notation that will be useful later in analysis, we will cover it again in Chapters II 

and III of this thesis.  For our purposes, we define “indirect detection” as the threat Red 

faces of being discovered indirectly and “direct detection” as the threat he faces from 

being found directly by Blue. 

1. Indirect Detection 

The local populace of a region can pose a risk to Red and shorten his survival 

time.  Blue can take advantage of this in a number of ways.  He could offer greater 

rewards for revealing Red or he could gain the confidence of the local population so that 

it is in their best interest to betray Red.  We can safely assume that as Red occupies an 

area the risk of discovery increases.  Assuming that Blue is looking on another route for 

Red, Red’s probability of detection and capture within t units of time on route i will be 

represented by ( )iQ t and the probability he has not already been captured is1 ( )iQ t .   

This probability of capture is not static but rather increases with time.   We let ( )ig t  

represent the rate at which this probability increases along route i while Red is on it.  

Making the additional assumption that Red’s risk is initially zero when he enters the route 

we get the following differential equation and its solution. 

  

             

'( ) ( )(1 ( )),

(0) 0

( ) 1 exp{ ( )}

i i i

i

Q t g t Q t

Q

Q t G t

 



  

 (1) 

   

Note that the derivative of ( )iQ t is the increase in the probability of detection.   It 

is the probability that Red has not been detected multiplied by the  rate of increase for 
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that route.  We further define ig  as a linear, strictly increasing, unbounded function with 

the initial probability, iq , that Red will be captured on that route plus some linear rate of 

increase, 0i  , that controls how quickly that probability increases with time.   Owen 

and McCormick used a constant 0.01  in their examples as a reasonable rate of 

increase.  In the case of our game, we can assign a value slightly larger if Blue is very 

aggressively pursuing indirect means of detection along that route.  Clearly, the value can 

change for each route based on Blue’s efforts. iG  is the anti-derivative of  ig  evaluated 

from zero to time t.   

This gives us 
  

 2

0

( )

( ) ( )  = t      
2

i i i

t
i

i i i

g t q t

t
G t g s ds q





 

 
 (2) 

 
Applying (2) to the solution in (1) we obtain 
 

 
( ) 1 exp{ ( )}

'( ) ( )(1 ( )) ( )exp{ ( )}
i i

i i i i i

Q t G t

Q t g t Q t g t G t

  
   

 (3) 

Red wants to maximize his survival time, so we can assume that at some time T 

he will decide to move, if he has not already been captured.  Keep in mind that Q(T) is 

the probability Red is captured by time T, 1-Q(T) is the probability that Red will be able 

to move at time T (i.e., he is not captured).   We will assign the random variable X to 

represent the time Red spends in route i before moving.  In determining this time, we 

must take into account not only the probability he will be able to move at that time, but 

also the probability he has not been captured before time T given the density 
' ( )iQ t from 0 

to T.  This gives us the formula for our expected time Red spends on route i. 

 

 
0

'[ ] ( ) (1 ( ))
T

i i iE X tQ t dt Q T T    (4) 

 
We can simplify this even further using (3) 

 
0

[ ] ( ) exp{ ( )} exp{ ( )}
T

i i i iE X tg t G t dt T G T     (5) 
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Red’s move does not come without risk.  He can always be detected en route to 

his next ambush location.  Independent of when he moves, he expects to survive an 

additional iV  units of time after starting the move.  Given that the probability that he will 

even get to move is exp{ ( )},iG t  we can define his total expected survival time on route 

i as 

 
0

( ) exp{ ( )} exp{ ( )} exp{ ( )}
T

i i i i i iA tg t G t dt T G T G T V       (6) 

 

Clearly Red’s decision to depart is based upon his desire to maximize the time T 

of his departure.  To maximize this we differentiate iA  with respect to T. 

 ( ) exp{ ( )} exp{ ( )} ( ) exp{ ( )} ( ) exp{ ( )}i
i i i i i i i i

dA
Tg T G T G T Tg T G t g T G T V

dT
         

 
When simplified we get 
 

 exp{ ( )} ( ) exp{ ( )}i
i i i i

dA
G T g T G t V

dT
     (7) 

 
Setting this to zero and solving for T produces the following 

 1 1
( )i i

i

T g
V

  (8) 

Since gi is a strictly increasing function, we can be assured that iT  is unique.  Now 

we notice that we can simplify equation (6) if we integrate by parts letting u = t and       

dv = g(t)*exp {-G (t)}. 

 Note: 
0 0

( ) exp{ ( )} exp{ ( )} exp{ ( )}
T T

i i itg t G t dt T G T G t dt        

So Red’s expected time to indirect detection along route i becomes 

 
0

exp{ ( )} exp{ ( )}
T

i i i iA G t dt G T V     (9) 

Keeping in mind how we defined gi we can take equation (8) and rewrite it as 

 
1

i i i
i

q T
V

   

Solving for T we get 

 
1 i i

i
i i

qV
T

V


  (10) 
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We can see that iT  has the potential of being a negative number or zero.  Since we 

assume that ,i iV  are positive, this can only occur when the initial probability iq  is 

sufficiently large so 1.i iV q    Such a cell would present a significant risk to Red, and 

offer no gain in his expected survival time.  Red would immediately move, if he found 

himself on such a route.  We will therefore choose iT  by (10), if it is positive and set 

0iT   otherwise.  Intuitively this makes sense.  If Red were to move into the Green Zone 

in Iraq, his initial probability of detection would be so high that he would immediately 

move to another location.    We can also see that by Blue increasing i  he forces Red to 

move more frequently and risk in transit detection more often. 

Going back to (2) and using the integral of G(t) we get the following: 

2

2
2

2
2

exp{ ( )} exp{ }
2

exp{ ( ) }
2 2

exp{ }exp{ ( ) }
2 2

i
i i

i i i

i i

i i i

i i

t
G t q t

q q
t

q q
t




 


 

   

   

  

 

Making this substitution into (9) produces the following 

 
2

2

0
exp{ } exp{ ( ) } exp{ ( )}

2 2

T
i i i

i i i
i i

q q
A t dt G T V


 

      (11) 

By letting ( )
2

i i

i

q
u t




   (10) becomes 

   
2

1

2
22

exp{ } exp{ } exp{ ( )}
2

U
i

i i iU
i i

q
A u dt G T V

 
                                               (12) 

Where our upper and lower limits of integration becoming 

 1 2  and 
22 2

i i i
i i i

i i

q q
U U T


 

                                                         (13) 
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Keeping in mind the error function 2

0

2
( ) exp{ }

x
erf x y dy


   we can then obtain iA  in 

terms of it. 

 

2

2 1exp{ } [ ( ) ( )]
2

exp{ ( )}
2

i
i i

i
i i i i

i

q
erf U erf U

A G T V







    (14) 

2. Direct Detection 

We define direct detection as the threat Red faces, if he is located on the same 

route as Blue.  In reality, Blue can directly search on multiple routes, but for this model 

Blue’s direct search is limited to the route the convoy is on.  Clearly, if Red happens to be 

on the same route as Blue, he will face two risks: 1) the risk of being “given up” and 2) 

the risk of being found by Blue before he can ambush the convoy.  The probability that 

Red will be detected in a direct search by time t is given by 

 ( ) 1 exp{ ( )}R t F t    (15) 

We make the assumption that Blue’s level of aggressiveness associated with 

directly finding Red will be the same regardless of which route Blue is on.  If the physical 

characteristics of the route or other limitations violate this assumption, we will need to 

differentiate this level of aggressiveness as we did in the indirect detection parameter α.  

Keeping this in mind, we define the forcing function for the risk of direct detection as the 

following 

 

 2

0

( )

( ) ( )  = t      
2

t

f t p t

t
F t f s ds p





 

 
 (16) 

where p is the initial probability that Red will be found, if he is on the same route as 

Blue’s recon and   (Blue’s direct aggressiveness) is the rate at which that risk increases, 

as long as he remains on the same route as Blue. 
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Assuming that Blue and Red are on the same route, we will define the time at 

which Red decides to move as iD  with his expected survival time after leaving route i 

still as iV .  Red’s total expected survival time, including the time he spends on the same 

route as Blue is therefore given by 

 
0

( ) exp{ ( )} exp{ ( )} exp{ ( )}
D

i i i i i i i i iB tf t F t dt D F D F D V       (17) 

Further refining this, as we did in the case with indirect detection, we obtain the 

following 

 

2

2 1exp{ }[ ( ) ( )]
2

exp{ ( )}
2

i
i i

i i i i

p
erf W erf W

B F D V






    (18) 

And, as before, our limits of integration become 

  1 2  and W
22 2

i i
i i i

p p
W D


 

             (19) 

In the same manner as we derived iT  (10), we get the following result for when  

Red will leave the route he is on, if Blue is directly searching there 

 
1 i i

i
i

pV
D

V


  (20) 

We can make the reasonable assumption that the indirect probability q will be less 

than the direct detection probability p.    Here we make the assumption that the rate of 

increase in a direct search, ,  will be equal or greater than the rate of increase in a 

indirect search,  .  Put another way, Blue’s patrols will be more aggressive and 

therefore more likely to find Red than any effort to have a third party uncover Red’s 

location.  (There may be cases where the inhabitants of an area will be more effective 

than Blue at capturing Red, but then Red would avoid these areas, as they give him no 

advantage.)  Since p > q and    it is apparent that i iD T  and Red will always depart 

more quickly, if Blue is directly searching on the same route as him.  As with iT , iD has 

the potential of being negative.  In that event, we will let 0iD  .     
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3. Stochastic Process 

As noted by Owen and McCormick, this is clearly a stochastic game in which 

Red’s survival time is dependent upon how often he is allowed to move.  To denote this, 

we will use m
iA  where m represents the number of times Red is allowed to move and i is 

the route that he starts in and the assumption is that Blue is searching on another route.  If 

Blue is on the same route as Red, we will represent Red’s expected survival time as 

before with m
iB .  After he moves, Red will be able to move m-1 additional times and he 

expects his remaining survival time to be 1m
jV  . 

Considering the case when Red is not allowed to move we let 1 0jV   .  Red will 

stay on the route until he is captured.  In this case, T becomes infinite and our upper 

bound on equation (12) goes to infinity along with G(x). This leads 

( ) 1 and lim 0x

x
Erf e


    and equation (14) becomes 

 

2

1
0

exp{ } [1 ( )]
2

2

i
i

i
i

i

q
erf U

A







  (21) 

 
 If we carry this out recursively we see that the general form of (21) becomes 

 

2

2 1
1

exp{ } [ ( ) ( )]
2

exp{ ( )}
2

i
i i

m mi
i i i i

i

q
erf U erf U

A G T V








    (22) 

Applying this to the time when Red departs the route we get 

 
1

1

1
max( ,0)

m
i i

i m
i i

qV
T

V






  (23) 

Similarly, we derive m
iB  in the following manner 

 

 

2

2 1
1

exp{ }[ ( ) ( )]
2

exp{ ( )}
2

i
i i

m m
i i i i

p
erf W erf W

B F D V








    (24) 

with 
 

 
1

1

1
max( ,0)

m
i i

i m
i

pV
D

V






                   (25)  
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Finding the expected time until capture along each route, assuming Red is not 

allowed to move (i.e., m = 0), is relatively simple.  For m > 0 we must take into 

consideration the time Red expects to gain from moving.  This is done by calculating a 

the expected time till detection for the route he is planning to move to by the probability 

that he will successfully complete the move. 

As Red moves from route i to route j, there is the probability ij  that he will 

complete his move without being captured.  (We can think of  as being a symmetric 

matrix made up of these probabilities based on the distances between routes with zeros 

along the diagonal.)  Red will then survive an additional or j jA B  when he arrives.  If 

Red moves to a route where Blue is not directly searching, he can be expected gain an 

additional ij  units of time if he survives the move 

 ij ij jA   (26) 

Similarly, if Red moves to a route where Blue is directly searching he can expect to gain  

ij  units of time if he survives the move 

 ij ij jB   (27) 

Focusing on a single route I, we can see the expected gain in survival time Red 

may obtain from moving to a different route j.  By ordering our j  in decreasing order 

1 2(i.e. ... )n     , we can use the following algorithm developed by Owen and 

McCormick to determine the increase in survival time after the move, iV , from route i.   

 
1

1

1
1

  and 

k
j

k
j j j

k k
j j j k

L V
L


 

 







 



  (28) 

Algorithm. 
 1. Let k = n (the number of routes) 
 2. Let v = vk, computed using (28) 
 3. If v k , proceed to step 6 

 4. If v k , let k=max {j | j v  } 

 5. Return to step 2 
 6. Compute x* and y* using (29) 
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0 0 0 1 1 1 1 1Solving for ( , ) then  allows us to solve for ( , ),  ,  then i i i i i i i iA B V A B D T V .  

Doing this iterative process allows us to find the expected times until capture for 

increasing values of m, the number of times we allow Red to change routes. 

Owen and McCormick discovered that while computing these quantities for 

increasing values of m their values change very little after approximately m = 10.  In their 

paper they proved convergence with the assumption that some risk is incurred every time 

Red moves (i.e. 1ij  ).  The greater the ,ij  the faster the expected times converge.   In a 

risky environment, it should not be necessary to compute for values of m greater than 10 

as it is unlikely Red can look more than 5 or 6 steps in advance to see where he should 

move. 

Coincidently, if we were just concerned with Red’s attempt at survival, we can 

compute the optimal strategies for Red’s use of routes and Blue’s strategy for finding 

him.  Given that the game has a value vk, we can compute
* *,x y , the optimal strategies 

for Red and Blue respectively, in the following manner 

 

*

*

   for 1 , and 0 for 1

L
=  for 1 , and 0 for 1

i k
i

i i

k
i

i i

v
x i k k i n

y i k k i n


 

 


     



    


 (29) 

A benefit of this model is its ability to determine where Red is most likely to 

move to when he does decide to move.  Owen and McCormick further explored this 

property with the assumption that we know the last location Red occupied [3].  We will 

not pursue the same analysis in this model.  If we knew that Red moved, and from which 

route, it gives us a route to use without fear of ambush, thus invalidating the need for 

further analysis for route selection.  It is worthy to note this property in the event Blue 

does learn of Red’s last position and wishes to send a patrol out to uncover him. 
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B. ANALYSIS OF SEARCH MODEL 

1. Decreasing Expected Time to Detection for a Single Route 

We make the assumption that Red can move multiple times to both increase his 

chances of attacking Blue and to avoid detection.   Therefore, the case 0
iA and 0

iB  do not 

concern us other than to establish the semi-steady state for m
iA and m

iB .  Blue’s goal is to 

drive  and i iT D to zero in order to make that route unattractive to Red and safer for the 

convoy.  Keeping in mind equations (23) and (25), simply increasing the Blue’s indirect 

aggressiveness ( )i  or direct aggressiveness ( )  will decrease Red’s expected time to 

detection but it will not get it to zero.  The ultimate goal is to drive the values 1 1m
i iqV    

and 1 1m
i ipV   .  Doing so brings Red’s departure times to zero, and he moves as soon as 

he finds himself on that route.  Blue can accomplish this by placing all of his effort onto 

the route with the largest initial probability of indirect or direct detection.  Since we are 

dealing with a single route, we will focus on direct detection from here on.  Since we are 

dealing with only one route the value then becomes 0B (keeping in mind that 1 0V    and 

letting k=1 for equation (26)) with the additional assumption that Red will be on that 

route to ambush Blue and neither will switch to another route.  Blue is then left with 

trying to drive 0B to zero.  How aggressive must the patrols be ( )  to make this happen?  

Taking equation (21) and applying it to 0B  gives us 

 

2

1
0

exp{ } [1 ( )]
2

2

i
i

p
erf W

B






  (30) 

Evaluating (27) shows us that 0B can never be zero since , ip  are always positive.  The 

only way to reduce the value of the route is to increase Blue’s direct aggressiveness ( )  

and the payoff for this effort decreases exponentially.  This is what we have come to 

intuitively understand and, although we are not limiting ourselves to a single route, it can 

help us see our diminishing rate of return on effort along a single route.   From this 

foundation we will shift our analysis to multiple routes.  
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2. Decreasing Expected Time to Detection for Multiple Routes 

As with Ruckle’s work on the geometric approach to the game [2], we will 

assume Blue takes a single route to his destination (i.e., straight line).  We will also make 

the assumption that the routes are independent of each other (i.e., they do not cross).  This 

is important, because if the routes intersected at a common point, then it becomes a game 

with one route at that point. We can then study the routes independent of each other. 

Using the above model, what must Blue do to secure a route?  Clearly if he is very 

aggressive (both indirectly and directly ( and i  )) he can then bring all  and i iA B  close 

to zero, but at the expense of spending greater resources.  We have already established 

that they can never be zero because of the exponential nature of the risk.  The best Blue 

can do is to drive the time at which Red will depart a route ( and i iT D ) to zero so that Red 

will move immediately away from that route if he is on it.  If he is able to accomplish 

this, then the equations (22) and (24) become: 

 
1exp{ }m m

i i iA q V     and 1exp{ }m m
i i iB p V    

Let us first focus on how Blue might get these departure times (  and i iT D ) to be 

zero.  By increasing his indirect aggressiveness ( ) , Blue can bring expected survival 

time, if Blue is not on the route (A) closer to the expected survival time if Blue was on the 

route (B) and the value of that route goes to B.  As the value of route is more dependent 

on A, Blue gets a greater payoff in the reduction of the route’s value by being indirectly 

aggressive ( )  but this does not get Red’s expected survival time any lower than if Blue 

was on that route (B).  To reduce Red’s expected survival time more, and ultimately to 

get it to zero, Blue must focus his effort on directly finding Red.  This suggests that Blue 

must dramatically increase his direct aggressiveness ( )  for this to happen.  However, 

Blue has another option.   

As already mentioned the value of a route, in the presence of other routes, ( 1m
iV  ) 

must be significantly large enough so that 1 1m
i iqV    and/or 1 1m

i ipV   .  To do this, Blue 

simply has to add routes under consideration.  However, as Blue adds routes and 
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increases 1m
iV   the value of Red’s expected survival time with Blue on the route ( m

iB ) 

goes up.  To strike a balance between the two, we find that 1 1m
i

i

V
q

  provides us the 

minimum value we need a route to be so as to bring the time when Red moves ( iD ) to 

zero (likewise for iT and 1 1m
i

i

V
q

  ).   To minimize the expected survival time for Red, if 

Blue is on the route ( m
iB ), Blue must now adjust his efforts too so that 1 1m

i
i

V
q

   and no 

more.  In reality, Blue will want to provide enough “useable” routes where Red will 

move immediately, if he discovers that Blue is on them (i.e., 0iD  ) while accepting the 

increase in m
iB  so that he can randomize which route he takes.  For the purposes of this 

game, we will only consider those routes that Blue is considering using and is currently 

exerting effort (either indirect or direct) to find Red.  (Remember that F (t) and G (t) must 

be strictly increasing).  In other words, Blue wants to provide enough viable routes for 

Red to choose from and hide on while reducing the attractiveness of certain routes.  This 

may not always be possible, since Blue often has only a finite number of routes to choose 

from and must make the most of what is available.  In addition to limited routes, the 

enemy also gets a vote.  Red, being an intelligent player, will try to overcome Blue’s 

efforts to avoid him by applying his own ambush model. 
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III. AMBUSH MODEL 

A. OVERVIEW 

No matter how unattractive Blue makes a route, if he continues to utilize that 

route, Red will be tempted to move onto that route and ambush Blue.  Red will risk direct 

detection to achieve his own goals. Blue’s probability of encountering a hazard, either 

indirect or direct, as he continues to utilize the same route convoy after convoy will 

increase.  We assume that Red’s efforts to intercept Blue will remain constant regardless 

of route and represent it with the variable . If this assumption is not valid, we will have 

to differentiate Red’s aggressiveness by route, as we did for α.  The more aggressive Red 

becomes the greater the value of  .   

1. Indirect Hazard 

Every convoy runs the risk of not completing the journey regardless of enemy 

action.  This could be the result of treacherous terrain (think of Hannibal’s journey across 

the Alps) or a longer route that can result in more breakdowns.  With this in mind, we 

define ir  as our initial probability of success for Blue crossing route i.  Note that this 

model takes the same form as our model for Red’s threat of indirect detection.  As we did 

there, we will start by defining S(t) to be the probability of an unsuccessful completion of 

a convoy.    

 ( ) 1 exp{ ( )}iS t H t    (31) 

where our strictly increasing risk is defined by 

 2

0

( )

( ) ( )  =      
2

i i

t

i i i

h t r t

t
H t h s ds tr





 

 
 (32) 

Following the same derivation we have used before, the expected survival time 

for Blue along route i, assuming he can change routes m times, is: 

 

2

2 1
1

exp{ } [ ( ) ( )]
2

exp{ ( )}
2

i
i i

m m
i i i i

r
erf K erf K

C H M V








    (33) 
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where the limits of integration are given by 

 1 2  and 
22 2

i i
i i i

r r
K K M


 

    (34) 

and the expected time of departure from route i is  

 
1

max( ,0)i i
i

i

rV
M

V


  (35) 

2. Direct Hazard 

Different routes provide Red with a greater advantage of ambushing Blue.  Some 

routes provide more than adequate cover for Red to hide or choke points for him to 

utilize.  Given this condition, we will assign the initial probability of a successful ambush 

to each route as is  and our strictly increasing risk is defined by 

 2

0

( )

( ) ( )  =      
2

i i

t

i i i

j t s t

t
J t j z dz ts





 

 
 (36) 

 This leads us to define our expected time of survival for Blue on route i as 

 

2

2 1
1

exp{ } [ ( ) ( )]
2

exp{ ( )}
2

i
i i

m m
i i i i

s
erf L erf L

E J N V








    (37) 

where the limits of integration are given by 

 1 2  and 
22 2

i i
i i i

s s
L L N


 

    (38) 

and the expected time of departure from route i is  

 
1

max( ,0)i i
i

i

sV
N

V


  (39) 

 

3. Stochastic Process 

We use the same method as we did for the Search Model in developing the 

expected time to ambush for Blue on each route given that Blue can change routes m 

times.  If m = 0, then our expected times for indirect or direct hazard respectively are: 
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2 2

1 1
0 0

exp{ } [1 ( )] exp{ } [1 ( )]
2 2

 and 
2 2

i i
i i

i i

h j
erf L erf K

C E
 

 
 

 
   (40) 

As with Red, Blue will face some risk by changing routes such as a greater 

distance to cover.  We will continue to use the terms tau and sigma to represent the 

expected gain in time by moving onto route j, depending on whether Red is present or not 

(respectively), but we will use   to represent our matrix of completion probabilities, as 

we did for  in the previous model. 

If Blue moves to a route where Red is not directly searching, he can expect to 

gain an additional ij  units of time if he survives the move 

 ij ij jC   (41) 

Similarly, if Blue moves to a route where Red is directly searching he can expect to gain 

ij  units of time if he survives the move 

 ij ij jE   (42) 

Then by using (28) we can determine the value of each route.  Using this we can 

iteratively find the expected survival time along each route by increasing m until we see a 

stable time appear while using equations (33) and (37).  We should keep in mind that the 

computation of the expected survival time after leaving route i (V) is done as before in 

equation 28 with the expected times till indirect hazard being sorted in decreasing order 

1 2(i.e. ... )n     .   If we wanted to see what Red and Blue’s optimal strategies are in 

the absence of the search model, we can use equation 29.   Note, however, that in this 

case *x  is Blue’s optimal strategy, since he is the row player and *y  is Red’s optimal 

strategy, since he is the column player. 

B. ANALYSIS OF AMBUSH MODEL 

1. Increasing Expected Survival Time on a Single Route 

As we saw in the analysis of the Search Model, restricting ourselves to a single 

route reduces the value of the game to that of the expected survival time associated with a 

direct hazard.  Again, this value can never be zero but gets exponentially closer to zero 
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with increasing levels of effort ( ) on the part of Red to increase the probability of 

hazard.  The challenge for Blue now, if he wishes to make it through the route 

successfully, is to ensure his expected survival time, 0E , is greater than Red’s expected 

survival time, 0B , along that route.  He can do this by making sure Red’s probability of 

detection, p , is greater than his initial probability of a hazard, r , and that his efforts to 

increase the rate of detection,  , are greater than Red’s efforts to increase the linear rate 

of interference,  . 

Of course, intuitively, this is what one expects.  If the route is a highway with 

clear fields of view, and Blue actively sends recons up and down the route, then he is apt 

to survive longer along that route than Red.  The converse is also intuitive.  If a route 

goes through an area where Red can easily hide, and Red is very aggressive along that 

route, then Blue’s survival time will be lower than that of Red.  Give the two options, 

Blue should always choose the former; thus leaving Red only the option of significantly 

increasing his efforts   to bring 0E  closer to 0B .  Given enough time though, Blue will 

be ambushed along that route.  Blue can reduce this risk by adding routes to choose from.  

This is especially true if the routes are not significantly favorable to Blue. 

2. Increasing Expected Survival Time on Multiple Routes 

In this model, Blue’s only influence over his expected time of survival until 

encountering a hazard is to add more routes under consideration.  As we see in equations 

(33) and (37) the expected survival time after moving goes up as we add more routes.  

However this also drives some of the times till departure, (35) and (39), to zero as some 

routes become more favorable.  As with the Search Model, it becomes disadvantageous 

for Blue to add more routes, if they do not offer an advantage to routes already under 

consideration.  There is also the practical matter of having only a finite number of 

possible routes to choose from in a realistic scenario.  We will therefore limit our study to 

a few routes with the understanding that Blue has chosen from the best available to him. 
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IV. BIMATRIX MODEL 

A. OVERVIEW 

We have now developed two models.  In each model, one player is trying to 

maximize his survival time while minimizing the other player’s survival time.  Taking 

these two models we will define the payoff matrices in the following manner 

 

  

  

  

  

(note: From here on we'll use the transpose of  since we need Blue to play the  

colum

 is the Search Payoff Matrix where {

 is the Ambush Payoff Matrix where {

ij

ij

ij

ij

A i j

ij B i j

C i j

ij E i j















 

 

ns of both matrices, but  was formed with Blue playing the rows)

 (43) 

These payoff matrices form the basis for our bimatrix game.  John Nash’s 

renowned paper on non-cooperative games [4] in 1951 proved that for every bimatrix 

game a pair of strategies exist that, if played by both players, maximize the value for 

both.  At this equilibrium point, neither player can obtain a greater value by applying a 

different strategy while his opponent’s strategy remains unchanged.  If both players 

change their strategies, then either party, or both, can obtain a greater value for their 

game..   

Both Red and Blue can choose a single route (a pure strategy) or they can 

randomize their route choice by assigning a probability to the likelihood that they will use 

it (a mixed strategy).  Let X be the set of all possible mixed strategies for Red and Y be 

the set of all possible mixed strategies for Blue.  The expected survival time for Red is 

Re ( , )   for some  and T
dE x y x y x X y Y    and likewise for Blue the expected 

survival time is ( , )   for some  and T T
BlueE x y x y x X y Y    .  The Nash equilibrium 

is the pair of mixed strategies that maximize the survival time for both players.  Letting 

* * and yx  be our optimal strategies we can state it in the following way 

  
** * * *

Re

* * * * *

( , ) x y    x X 

( , ) x y   y Y

T T
d

T T T T
Blue

E x y x y

E x y x y

     

     
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Once we find * * and yx  we define the value of the game for each player as 

* * * *
Re  and T T T

d BlueV x y V x y    .  The player with the larger value has the advantage 

given the Nash equilibrium identified.  Unfortunately, there is not always a single 

equilibrium point in their available strategies. 

1. Finding Pure Equilibrium Points 

Finding pure equilibrium points is relatively easy.  Looking at Red’s payoff 

matrix, ,  we choose the largest expected survival time in each column.  For Blue, we 

look at the transpose of his payoff matrix, ,T  and choose the largest value in each row.  

the locations (i,j) where these locations occur simultaneously are called the pure 

strategies where Red will use route i and Blue will use route j.  As an example, take the 

following payoff matrices 

2 5 5 10 16 18

6 3 6   22 8 18

4 4 1 22 16 12

T

   
         
      

 

We have labeled using < > those column and row entries that are the largest for 

Red’s columns and Blue’s rows (respectively).  From the example, we see that our 

equilibrium point is met when Blue chooses route 1 and Red chooses route 2.  The 

advantage is clearly in Blue’s favor, as he is expected to survive longer than Red.  This 

equilibrium should not be any surprise, as our payoff matrices are constructed in such a 

fashion that the pure strategy for either player will always be the route that provides the 

longest possible expected survival time, if the adversary is not on the route.  Furthermore, 

since   and Ci i i iA B D  the only possibility of Red or Blue choosing the same route 

(equilibrium on the diagonal) is in the event both indirect and direct detection/hazard 

times are equal.  We can intuitively understand this result, however unlikely, as both Red 

and Blue have nothing to gain if they end up on the same route. 
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If Red or Blue wanted to alter the expected survival times, they could do so by 

spending resources (increasing their aggressiveness) to increase the rate of detection or 

hazards ( ,  and )    thereby decreasing the value for their opponent.    

We must note that more than one pure strategy may appear using the following 

method.  The strategy to choose would be the one that offers the maximum survival time 

to both players.  If such a strategy does not exist, or multiple pure strategies occur with 

the same value, Red and Blue will need to determine their optimal mixed strategies.  This 

is far more realistic, since Blue and Red will not always play a perfect game ensuring that 

they never pick the same route.  Blue and Red will want to randomize their route 

selection as to not give an advantage to the other player in detecting them. 

2. Finding Mixed Equilibrium Points 

Finding all possible mixed Nash equilibria can be a daunting task.  In 1964, 

Lemke and Howson [5] showed how to obtain all of the mixed equilibrium points in a 

two person game using non-linear programming.  Their algorithm states that the 

strategies * * and yx are Nash equilibria, if and only if, they maximize the following non-

linear equation and constraints [6]: 

 

, , ,

   

1 1

* *
Re

max

subject to:

 (where  is a 1 vector of all ones)

0 and y 0 (1.. )

1

(   and )

T T

x y p q

n n n

i i

n n

i j
i j

d Blue

x y x y p q

y pJ x qJ J n

x i n

y x

p V q V

 

    

    
   

 

 

 

 (44) 

 

Solving the above problem is best done using software.  Barron [6] provides the 

Maple and Mathematica commands for setting up and solving such a problem.  There are 

also multiple software packages available, such as SNOPT and KNITRO, which can be 

used for solving problems involving a large number of routes.  For the examples given 

below with relatively few routes, we will rely on Maple’s NLPSolve command to find 
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multiple mixed Nash Equilibria.  We accomplish this by altering the starting point for the 

non-linear program search by varying the values of p and q.  This is no trivial task as the 

upper bound on number for equilibria is theorized to be 2 1n   in an n x n game [7]. 

In a perfect world, Blue and Red will agree to use a pure equilibrium, and they 

will never meet on a route.  Both will choose the routes that provide them the greatest 

indirect detection time without being on the route together.  This is unlikely as each will 

be inclined to use this predictability to their advantage and actively intercept the other.  A 

better way to approach this problem is to determine the value of the individual games 

(search or ambush) and use these as our starting points for determining the mixed 

equilibrium strategies (i.e., p and q in 44).  We can determine the expected payoffs of the 

individual games in the following way 

 

* *
Re

* *
Re

T

T
Search d Search Blue Search

T
Ambush d Ambush Blue Ambush

V x y

V x y

 

 

 

 
 (45) 

  

These two values, while interesting, do not take into account the dynamics of both 

players being threatened while simultaneously threatening their opponent.  What they do 

provide is a starting point when we apply non-linear programming to determine both 

players’ optimal strategies when faced with their competing self-interests of survival and 

attack.  Depending on the risk either faces from moving, we may still encounter pure 

strategies where Red or Blue decide to use a single route rather than run the risk of 

changing routes even if they can shorten the expected survival time of the other.  Clearly, 

if the risk of movement is not too great, a mixed strategy would best benefit both players 

as they can randomize their route selection.  In the examples that follow, we will explore 

several variations of this game. 

B. EXAMPLES 

1. High Risk of Movement for Red and Uniform α 

In this example, we will examine the game where Blue may choose from six 

routes.  The situation is such that Red faces a significant risk every time he decides to 
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move—less than 50% probability of successful completion of the move.  Blue has 

relative freedom of movement—greater than 90% probability of successfully changing 

routes.  The rate of increase in the probability of detection is uniform for all players 

( .01)     .    

We list Red and Blue’s initial probabilities of detection in the following table, 

along with the variables assigned to them in Chapters II and III.   

Route p (Search Active) q (Search Passive) j (Ambush Active) r (Ambush Passive)

1 0. 5 0.3 0.4 0.1
2 0.7 0.4 0.6 0.1
3 0.4 0.1 0.3 0.2
4 0.3 0.2 0.4 0.1
5 0.2 0.1 0.5 0.2
6 0.5 0.1 0.3 0.1  

Table 1.   Example I—Probabilities of Ambush / Detection 

Our first step is to determine the expected time to capture / ambush assuming that 

neither Red or Blue are allowed to change routes (m =0).  Doing so using the Search 

Model gives us 

m=0 1 2 3 4 5 6 

0
iA  3.05 2.37 6.56 4.21 6.56 6.56 

0
iB  1.93 1.40 2.37 3.05 4.21 1.93 

Table 2.   Example I—Red’s Expected Survival Time with No Moves 

Using this, we can then start to determine the value of the routes and the time Red 

will stay on each route.  To compute how much extra time Red expects to gain from 

moving from route i to route j, we need to define the risk he faces during the move.  

Using (26), (27), (41), (42) and Red and Blue’s probability of successfully changing 

routes, given respectively by the matrices and  below, we determine that letting m = 4 

we reach stability in that the values for A, B, T, D, and V converge to within the first two 

decimal places.   
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Р 1 2 3 4 5 6
1 0 0.452 0.409 0.452 0.435 0.402
2 0.452 0 0.452 0.435 0.452 0.435
3 0.409 0.452 0 0.402 0.435 0.452
4 0.452 0.435 0.402 0 0.452 0.409
5 0.435 0.452 0.435 0.452 0 0.452
6 0.402 0.435 0.452 0.409 0.452 0  

Table 3.   Example I—Red’s Probabilities for a Successful Moves 

Θ 1 2 3 4 5 6
1 0 0.98 0.96 0.94 0.93 0.92
2 0.98 0 0.98 0.96 0.94 0.93
3 0.96 0.98 0 0.98 0.96 0.94
4 0.94 0.96 0.98 0 0.98 0.96
5 0.93 0.94 0.96 0.98 0 0.98
6 0.92 0.93 0.94 0.96 0.98 0  

Table 4.   Example I—Blue’s Probabilities for a Successful Move 

The values of A, T, B, D, and V all correspond to the equations given in Chapter II. 

 
m=4 1 2 3 4 5 6 

4
iA  3.05 2.45 6.56 4.21 6.56 6.56 

4
iT  13.83 1.04 34.97 23.08 40.76 33.76 

4
iB  2.28 2.44 2.38 3.05 4.21 2.29 

4
iD  0 0 4.97 13.08 30.76 0 

4
iV  2.28 2.44 2.22 2.32 1.97 2.29 

Table 5.   Example I—Red’s Expected Survival Time with Multiple Moves 

For this example, the optimal strategies for Red and Blue (in the absence of the 

Ambush model) are 

 1 2 3 4 5 6 

*
Red Searchx   0 0 0.2661 0 0.4734 0.2605 

*
Blue Searchy   0 0 0.2661 0 0.4734 0.2605 

Table 6.   Example I—Optimal Search Strategies  
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Red can expect the following survival time using this strategy: 

* *
Re 5.446T

Search d Search Blue SearchV x y    .  Note that Red and Blue share the same route 

selection strategies in this example.  This will not always be the case. 

We need to now find the expected survival times for Blue using the Ambush 

model.  As with the Search model, we start by determining the initial expected survival 

times along each route assuming that Blue is not allowed to change routes once one is 

selected (m = 0). 

m=0 1 2 3 4 5 6 

0
iC  3.13 3.13 2.55 4.13 2.55 3.13 

0
iE  1.82 1.39 2.13 1.82 1.58 2.13 

Table 7.   Example I—Blue’s Expected Survival Time with No Moves 

Since Blue faces less risk moving from cell to cell, the expected times of survival 

converge much slower than for Red.  By m = 35 we get convergence in the first two 

decimal places.   

Table 8 shows the values of C, M, E, N, and V as given in Chapter III. 

m=35 1 2 3 4 5 6 
35
iC  4.78 4.80 4.57 4.79 4.53 4.77 

35
iM  1.25 1.24 0.19 1.24 0.21 1.25 

35
iE  4.45 4.48 4.56 4.47 4.52 4.44 

35
iN  0 0 0 0 0 0 

35
iV  4.45 4.48 4.56 4.47 4.52 4.44 

Table 8.   Example I—Blue’s Expected Survival Time with Multiple Moves 

It should not surprise us that all N are zero.  With so little risk to Blue’s 

movements, he will change routes immediately, if he finds himself on the same route as 

Red.  Keep in mind that in this game Blue is playing the rows, and Red is playing the 

columns of our matrix Λ, however, for the sake of consistency, we will continue to define 
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Blue’s optimal strategy as y and Red’s as x.  The optimal mixed strategy for each player 

in the absence of the Search model thus becomes 

 1 2 3 4 5 6 

*
Red Ambushx   0.2519 0.2519 0 0.2519 0 0.2443 

*
Blue Ambushy   0.2125 0.3063 0 0.2750 0 0.2062 

Table 9.   Example I—Optimal Ambush Strategies 

The value of the Ambush model is * *
Re 4.702T

Ambush Blue Ambush d AmbushV y x   
,
 

and this also gives us the time Blue can expect to survive without an ambush using the 

available routes.  We note here that  Ambush SearchV V , and given these results alone, we 

expect an ambush to occur before Red is discovered.  In this event, Blue may want to find 

additional routes or find a way to increase the rate of indirect detection in those cells still 

relevant for Red to use. 

Using the Search Model, we can vary the values for α and β to see the effect of 

each.  The graphs below show the change in SearchV
, as we vary these parameters while 

keeping the other one constant.  

 

Figure 1.   α varies while β=.01 
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Figure 2.   β Varies while α=.01  (Same Graph – Different scales for horizontal axis) 

Clearly, Blue’s indirect efforts to detect Red (α) reduce Red’s expected survival 

time (Vsearch) with greater efficiency than Blue’s direct efforts (β).  As expected, as both 

direct and indirect efforts increase they show a decreasing return on their ability to reduce 

Red’s expected survival time.  If Blue finds himself at a disadvantage, (i.e., his expected 

survival time is less than Red’s) this analysis can help the commander decide where to 

place his efforts (direct or indirect) to get the best reduction in Red’s expected survival 

time. 

Taking both games into consideration, we obtain the following bi-matrix 

consisting of  and T  ; each cell contains a value from each individual payoff matrix 

( , )  . 

1 2 3 4 5 6
1 (2.28, 4.45) (3.05, 4.80) (3.05, 4.57) (3.05, 4.80) (3.05, 4.53) (3.05, 4.77)
2 (2.45, 4.78) (2.44, 4.48) (2.45, 4.57) (2.45, 4.80) (2.45, 4.53) (2.45, 4.77)
3 (6.56, 4.78) (6.56, 4.80) (2.38, 4.56) (6.56, 4.80) (6.56, 4.53) (6.56, 4.77)
4 (4.21, 4.78) (4.21, 4.80) (4.21, 4.57) (3.05, 4.48) (4.21, 4.53) (4.21, 4.77)
5 (6.56, 4.78) (6.56, 4.80) (6.56, 4.57) (6.56, 4.80) (4.21, 4.52) (6.56, 4.77)
6 (6.56, 4.78) (6.56, 4.80) (6.56, 4.57) (6.56, 4.80) (6.56, 4.53) (2.29, 4.44)

 
Table 10.   Example I—Bimatrix Model 

We immediately note that there are multiple pure Nash Equilibrium points in the 

above matrix.  The points that yield the maximum survival time for both are outlined in 
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black above.  If Blue and Red were purely rational players, they would avoid each other 

completely.  Blue would choose either route 2 or 4 and Red would choose 3, 5 or 6.  Blue 

would then obtain a value of 4.80 and Red a value of 6.56 for the bimatrix game.  Clearly 

Red has the advantage in this scenario.  To find the mixed Nash Equilibrium points we 

resort to non-linear optimization.   

Why do we need to find mixed equilibrium, if we already have several pure 

strategies from which to choose?  If Red and Blue collaborate to ensure they both avoid 

capture/ambush for the longest possible time, then pure strategies are the answer.  

However, both parties can be less concerned about their own survival time and more 

concerned with reducing the survival time of their adversary.  We call these different 

strategies as risk adverse (wishing to maximize one’s own survival time) and risk prone 

(disregarding self-preservation in an effort to reduce the others). By adjusting the initial 

point in our non-linear programming, we arrive at different optimal mixed strategies. In 

the tables below, we declare our starting point as (p, q) where p is Red’s payoff from the 

Search game and q is Blue’s payoff from the Ambush game, refer to equation (44). 

We assume that each player wishes to find the optimal strategy that gets them as 

close to the value of their individual games as possible.  This means we conduct our non-

linear optimization from the initial value of (5.446, 4.702).   Using a software package (in 

this case MAPLE’s NLPSolve command) we obtain the following mixed strategies: 

(5.446,4.702) 1 2 3 4 5 6 

*
Redx  0 0 0.283 0 0.717 0 

*
Bluey  0 1 0 0 0 0 

Table 11.   Example I—Optimal Bimatrix, Risk Adverse Strategies 

Our players are now using strategies that are consistent with the pure strategies 

previously noted (and only Red is using a mixed strategy).  Note that they still do  

not choose routes that intersect with their adversary.  Using these mixed strategies,  

we can determine the value of the game for each player as: 

* *
Re

* *6.56 and 4.80.d Blue
T TVV x y x y       This should not be surprising as the 
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pure strategies all lead to the same values of the game for each player.  In practical 

applications, any mixed strategy involving the pure strategies will yield the same result.  

Over the course of time, each player is benefited by randomizing their choices so a mixed 

strategy is preferable over a pure strategy, especially when they lead to the same values 

for the game. 

What if each player was so aggressive that he was not concerned with maximizing 

his own survival time?  By setting our initial point to (0,0) we get the following 

strategies: 

(0,0) 1 2 3 4 5 6 

*
Redx  0 0 0.283 0 0.717 0 

*
Bluey  0 .643 0 .357 0 0 

Table 12.   Example I—Optimal Bimatrix, Risk Prone Strategies 

Blue has now adopted a mixed strategy and Red’s strategy has not changed.  The 

values of the games are unchanged at: * *
Re

* *6.56 and 4.80.d Blue
T TVV x y x y      

Clearly there are multiple strategies for Red and Blue that lead to the same values.  In 

reality, a route that is conducive to a successful ambush (choke points with lots of cover) 

is also conducive to hiding.  Likewise, a route that is favorable for a convoy (wide open 

spaces) is not favorable for the enemy seeking to avoid detection.  Therefore, it should 

not be surprising that Red and Blue seek out different routes. 

Blue can use this information to his advantage by choosing his route strategy 

among the mixed strategies among routes 2 and 4 that lead to 4.80BlueV  while avoiding 

routes 3 and 5.  Blue also has the benefit of learning the mixed strategy Red will adopt in 

the Nash Equilibrium.   It is important to note that if Blue was to use this information to 

send a separate patrol to find Red using this strategy, it would violate the assumptions set 

forth at the beginning of this paper.  The game would then become one of 3 players (vs. 

2).  Next, we will see what happens when Red is allowed to move with less risk. 
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2. Low Risk of Movement for Red and Uniform α 

In this example, we will set the probabilities of detection/hazard for Red and Blue 

(indirect and direct) very close to each other.  This will drive them to consider the same 

routes.  We will also make it less likely that Red will be intercepted in transit.  As in 

Example I with Blue, both players will have a 90% or greater probability of successfully 

changing routes.  The linear rate of increase in the probability of detection/hazard is 

uniform for all players ( .01)     .    

Red and Blue’s initial probabilities of detection are given in the following table 

along with the variables assigned to them in Chapters II and III.   

 
Route p (Search Active) q (Search Passive) j (Ambush Active) r (Ambush Passive)

1 0.5 0.3 0.4 0.2
2 0.5 0.4 0.6 0.1
3 0.4 0.2 0.4 0.2
4 0.3 0.2 0.3 0.1
5 0.3 0.1 0.2 0.1
6 0.2 0.1 0.3 0.1  

Table 13.   Example II—Probabilities of Ambush / Detection 

As before, our first step is to determine the expected time to capture / ambush 

assuming that neither Red or Blue are allowed to change routes (m =0).  Doing so using 

the Search Model gives us 

m=0 1 2 3 4 5 6 

0
iA  3.05 2.37 63.56 4.21 6.56 6.56 

0
iB  1.93 1.40 2.37 3.05 4.21 1.93 

Table 14.   Example II—Red’s Expected Survival Time with No Moves 

Once again, we go through the process outlined in Example 1 to determine the 

final values for each route.  Both Blue and Red face little risk in moving as given inTable 

15.  Our equations (26), (27), (41) and (42) converge much slower, and we must calculate 

larger values of m before reaching a stable solution.  As with Blue in the first example, 

we will need m = 35 to get convergence to the first two decimal places. 
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Р and  Θ 1 2 3 4 5 6
1 0 0.98 0.96 0.94 0.93 0.92
2 0.98 0 0.98 0.96 0.94 0.93
3 0.96 0.98 0 0.98 0.96 0.94
4 0.94 0.96 0.98 0 0.98 0.96
5 0.93 0.94 0.96 0.98 0 0.98
6 0.92 0.93 0.94 0.96 0.98 0  

Table 15.   Example II—Red and Blue’s Probabilities for a Successful Move 

The values of A, T, B, D, and V are found with the equations given in Chapter II. 

 
m=35 1 2 3 4 5 6 

35
iA  6.86 6.96 7.49 7.13 7.55 7.52 

35
iT  0 0 4.51 0 4.29 4.34 

35
iB  6.86 6.96 6.89 7.13 7.00 6.95 

35
iD  0 0 0 0 0 0 

35
iV  6.86 6.96 6.89 7.13 7.00 6.95 

Table 16.   Example II—Red’s Expected Survival Time with Multiple Moves 

For this example, the optimal strategies for Red and Blue (in the absence of the 

Ambush model) are 

 1 2 3 4 5 6 

*
Red Searchx   0 0 0.3206 0 0.3459 0.3335 

*
Blue Searchy   0 0 0.2673 0 0.3992 0.3335 

Table 17.   Example II—Optimal Search Strategies 

Red can expect the following survival time using this strategy: 

* *
Re 7.330T

Search d Search Blue SearchV x y    . 
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Doing the same for Blue, we obtain the following. 

m=0 1 2 3 4 5 6 

0
iC  4.21 6.56 4.21 6.56 6.56 6.56 

0
iE  2.37 1.62 2.37 3.05 4.21 3.05 

Table 18.   Example II—Blue’s Expected Survival Time with No Moves 

Table 19 shows the values of C, M, E, N, and V as given in Chapter III. 

m=35 1 2 3 4 5 6 
35
iC  7.24 7.70 7.43 7.80 7.83 7.80 

35
iM  0 3.82 0 3.54 3.45 3.54 

35
iE  7.24 7.24 7.43 7.39 7.44 7.38 

35
iN  0 0 0 0 0 0 

35
iV  7.24 7.24 7.43 7.39 7.44 7.38 

Table 19.   Example II—Blue’s Expected Survival Time with Multiple Moves 

As with Blue in Example 1, all D and N are zero, since there is little risk to Red or 

Blue to move, if they find themselves in the same cell as their adversary.  We will 

continue to define Blue’s optimal strategy as y and Red’s as x.  The optimal mixed 

strategy for each player considering only the Ambush model thus becomes 

 

 1 2 3 4 5 6 

*
Red Ambushx   0 0.0426 0 0.2862 0.3872 0.2841 

*
Blue Ambushy   0 0.2253 0 0.2545 0.2659 0.2543 

Table 20.   Example II—Optimal Ambush Strategies 

The value of the Ambush model is * *
Re 7.6776T

Ambush Blue Ambush d AmbushV y x     

and this also gives us the time Blue can expect to survive without an ambush using the 

available routes.  Unlike our previous example Ambush SearchV V , leading us to believe 

that Blue has a slight advantage in this scenario and can expect to live longer. 
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As before, we obtain the following bi-matrix consisting of  and T  ; each cell 

contains a value from each individual payoff matrix ( , )  . 

1 2 3 4 5 6
1 (6.86, 7.24) (6.86, 7.70) (6.86, 7.43) (6.86, 7.79) (6.86, 7.83) (6.86, 7.79)
2 (6.96, 7.24) (6.96,7.24) (6.96, 7.43) (6.96, 7.79) (6.96, 7.83) (6.96, 7.79)
3 (7.49, 7.24) (7.49, 7.70) (6.89,7.43) (7.49, 7.79) (7.49, 7.83) (7.49, 7.79)
4 (7.13, 7.24) (7.13, 7.70) (7.13, 7.43) (7.13,7.39) (7.13, 7.83) (7.13, 7.79)
5 (7.55, 7.24) (7.55, 7.70) (7.55, 7.43) (7.55, 7.79) (7.00, 7.44) (7.55, 7.79)
6 (7.52, 7.24) (7.52, 7.70) (7.52, 7.43) (7.52, 7.79) (7.52, 7.83) (6.95,7.38)

 
Table 21.   Example II—Bimatrix Model 

The pure Nash Equilibria are highlighted in Table 21.  Interestingly, both Red and 

Blue would prefer to use Route 5 as it provides them the greatest value if their adversary 

is not along that route.  To avoid confrontation, which would decrease their survival time, 

Red and Blue would benefit from using the route pairs (5,4), (6,5), or (5,6) to maximize 

their survival times.  As mentioned previously, a pure strategy is not viable over time as it 

provides the adversary a clearer picture of where to find you.  We see through our non- 

linear programming that a mixed strategy provides Red and Blue both with greater values 

for their individual games though at a risk that they might take the same route at the same 

time. 

Using non-linear optimization we will start our search for mixed Nash Equilibria 

with the values of the individual games 7.330SearchV  and 7.6776AmbushV  .  This 

produces the following optimal strategies: 

(7.330,7.678) 1 2 3 4 5 6 

*
Redx  0 0 0.8974 0 0.1026 0 

*
Bluey  0 0 0 0.8383 0.1091 .0526 

Table 22.   Example II—Optimal Bimatrix, Risk Adverse Strategies 
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Using these mixed strategies; Red and Blue obtain the following values for the 

game: * *
Re

* *7.49 and 7.79.d Blue
T TVV x y x y       Note how their mixed strategies 

give them a greater payoff than the pure strategies.  This comes from an interesting 

choice for how they randomly choose the route they will take.   

From Table 21, Red’s route preference (from highest value to lowest) should be 

5-6-3-4-2-1.  Blue’s preference should be 5-4-6-1-2-3 where 4 and 6 could be 

interchanged, since they have the same value.  Interestingly, the mixed strategies in Table 

22 show that Red will avoid 6, even though it is his second highest valued route, to avoid 

Blue.  The values for Route 5 are great enough that both Red and Blue will risk taking 

route 5 approximately 10% of the time to increase their overall value leading them to 

increase their overall values from the pure strategies. 

As in Example 1, we set our initial value at (0,0) to represent a more aggressive 

game where each player wishes to obtain a strategy that brings their opponent’s values to 

zero.  Doing so produces the following optimal strategies: 

(0,0) 1 2 3 4 5 6 

*
Redx  0 0 0.8974 0 0.1026 0 

*
Bluey  0 0 0 0.8383 0.1091 .0526 

Table 23.   Example II—Optimal Bimatrix, Risk Prone Strategies 

Clearly, there is no change in optimal strategies from our previous initial starting 

point and, therefore, the values of the game for Red and Blue go unchanged.  In fact, by 

varying our initial point we can see that this mixed strategy is relatively stable.  Each 

player can be assured of the outcome regardless of the aggressiveness of their adversary.  

As before, Blue can then use this information to route his convoy using y* knowing which 

routes he is most likely to encounter Red on. 
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V. TOPICS FOR FURTHER RESEARCH 

A. APPLICATION 

Practical application of this method is reliant on determining the initial 

probabilities of indirect and direct detection for each route under consideration.  While 

this may be impossible to do with any certainty, approximations based on the relative risk 

each route presents can provide a starting point.  This model also offers the ability to 

determine the effect, if any; indirect detection methods (rewards, humanitarian efforts, 

etc.) have on the enemy’s strategy for route selection in the face of trying to engage a 

convoy.  Also, by assigning cost to both direct and indirect measures, the commander can 

best determine which investment returns the greatest survival times for his convoy. 

B. POSSIBLE FOLLOW-ON RESEARCH 

This model provides only a starting point in exploring the relationships between 

the indirect and direct aggressiveness each player exhibits in trying to minimize their 

opponent’s survival time while maximizing their own.  This model could easily be 

adopted for cities where Blue wishes to dissuade enemy activity through both direct and 

indirect means.  In this scenario, an optimal control problem is clearly present.  What is 

the balance of direct and indirect aggressiveness that minimizes the time Red stays in the 

city that also allows Blue to maximize resources?  Another avenue of research is the 

relationship between Blue’s aggressiveness (α,β) and Red’s aggressiveness (γ).  This can 

be applied to the classic problem faced by law enforcement.  As each player gets 

increasingly aggressive in their direct attempts to eliminate their opponent, they are 

greeted with increasing direct aggressiveness from their opponent.  A indirect aggressive 

approach may be more appropriate and this model provides for exploring that option.  

Finally, another possible research path is to apply this model to a network of routes where 

flow analysis can be combined with the expected survival times along each route to 

determine the best overall route to take.  In conclusion, this model can be readily adopted 

for a myriad of problems where two parties have conflicting goals and two methods of 

achieving those goals. 
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